MODELING PARTITIONED AND REPLICATED DATABASES

USING AN EXTENDED CONCEPT OF GENERALIZATION"

Stanley Y. W. Su

Amrish Kumar™”

Database Systems Research and Development Center
University of Florida, Gainesville, Florida

ABSTRACT

pPartitioning and replication of data are very
important concepts in logical database design of
both centralized and distributed databases. It is
very important that the relationships among the
vertical and/or horizontal partitions of a relati-
on and the- information about data replication be
explicitly modeled and dynamically maintained so
that their integrity and consistency can be autom-
atically enforced by a DBMS or a distributed DBMS.
In this paper, we present an extended generalizat~
ion concept and show how it can be used to explie-
itly model various types of datn partitionsz with
or without replication. Storage cpecation rulng
for these partition types are defined for intagri-
ty control purposes and rules {or modifying ths
schema at run time, when partitions are dypnamical-
ly created or modified, are also presented. Integ—
rity control can be enforced by following the
modified model and constraints of these parti-
tions.

1. INTRODUCTION

A database contains time-varying operational data
of an enterprise and is defined by a schema.
Partitioning in database design is the process of
assigning a logical concept (relation) defined in
the logical schema to several physical objects
(files) in a stored database. For a distributed
database the notion of partitioning is equivalent
to the idea of fragmenting some relation and stor—
ing the fragments at different sites in the dist-
ributed database. Partitioning a database will
thus involve the following decisions: 1) logical
decisions, concerning the structure and composi-
tion of the fragments of a relatiom, and 2)
distribution and allocation decisions concerning
the placement of fragments at various sites.

The partitioning of a data file can be achi-~
eved in two ways. First, the columns (attributes)
of a relation can be semantically categorized and
partitioned to form several separate entity types
in the conceptual design of a database. Each enti-
ty type is defiped over a smaller number of attri-
butes compared to the original relation. This
method i3 referred to as VERTICAL PARTITIONING.
Secondly, & relation can be subdivided into groups
each of which contains tuples that satisfy a cert-
ain predicate. All groups have the same attributes
of the original relation. This mode is referred to

*This research is supported by the Navy Manufac-
turing Technology Program through the National
Bureau of Standards grant #$60NAB4DO0O17.

ssCurrent address:Honeywell Computer Sciences Cen-
taz, 1000 Boone Ave. North, Golden Valley MN55427.

as HORIZONTAL PARTITIONING. In many cases, howev-—
er, it is advantageous to partition a relation
both horizontally and vertically, thus yielding
blocks/ cells of tuples or subtuples from the
original relation.

The motivation behind partitioning a database
are fourfold:(1l) Assuming that each site is an
independent database that is part of a homogeneous
or heterogeneous database, partitioning increases
the locality of data at each site and allows, at
the same time, access to the data from other
gites. (2) Partitioning is used during the design
of a dazabase £o improve the performance of trans-
soticps (faster accase speed). Since the fragments
consist ¢f less/smaller records, fewer pages in
secondary memory need to be accessed to process a
transactios. Fragment allocation should maximize
the amount of local transactiom processing if the
fragments match the requirements of transactions
at a particular site. (3) Partitioning reduces
the data transmission cost involved in moving data
from one site to another. This cost may or may not
be significant depending on how many sites contain
the relavant data, the actual sizes of data invol-
ved in transmission, and the network structure and
speed. (4) Fipally, partitioning is one solution
to the problem of storage limitation at network
sites. In such cases, the cost and feasibilicty of
storage expansion must be weighed against the
added data communication costs.

If a database is partitioned and some data is
replicated at multiple sites in a network systaa,
it is important for the database management system
to keep track of the relationships among the part-
itioned data files and the locations where the
replicated data reside so that database integrity
can be systematically enforced. A number of cons-
traints are thus required to be associated with
these partitions so that the distributed DBMS can
dynamically monitor the partitioning and replicat-
ion ralationships of the fragmented data files and
enforce consistency and integrity of the database
These congtraints take the form of storage operat-
ion rules, which dictate what changes must be made
to related partitions, if a change is attempted on
some partition. The partitioning, replication, and
digtribution information along with the storage
operation rules are not modeled axplicitly in the
present distributed database management systads,
i.e. they are not included in the schena definic-
ion of a database. In order for a distributed DBMS
to anforce the integrity of partitioned databases.
they need to be defined by the DBA somewhere, if
not in the schema. Since partitioning, replication
and digtribution are generally based on the seman-~
tic properties of the data and their usage statis-
tics, we balieve that they should be a part of the
conceptual model of a distributed database.

To appear: Proc. of COMPSAC '87, Tokyo, Japan, Oct. 1987.

http:ext.nd.d

A large body of work on Partitioning has
been done on the selection and allocation of
fragments inm distributed databases, taking into
account semantics of the data, user requirements
and statistics, and minimization of access time
[1 - 9}. In this paper, we do not concern ourse-
lves with the above menticned problems but pro-
pose a representation technique for partitioming
information using an extended concept of genera-
lization. This technique allows the representa-
tion of partition information as part of the
global conceptual view of a digtributed data-
basge.

The concept of GENERALIZATION was intro-

~duced by works of artificial intellegence (e.q.
[12)). It was first used in database modeling by
Smith and Smith {1l]. This concept iz a powerful
tool for the expression and solution of a number
of problems related to database modeling. The
importance of generalization in database integ—
ration is emphasized in the MULTIBASE project
[16,17] where it is used to resolve several
structural and data inconsistencies that might
exist within the different schemas to be integ-
rated {18]. Properties of generalization hier-
archies are examined in {10). Generalization
could also be used to resolve similar inconsis-
tencies in the related but different problem of
view integration {19]. In the context of data-
base partitioning, we observe that the partit-
ions are very closely related to each other as
they are formed from the same relation, and
contain information about the same entity type
and can thus be treated as members of a more
general class. By extending the concept of gene-
ralization to include set relationships as con-
straints, generalization can be uged to model
partitioned databases.

This paper is organized as follows: Section
2 describes the generalization construct of a
Semantic Association Model (SAM®*) and its set
relationships. In section 3, the modeling of
horizontal and vertical partitioned data with
/without replication using the exteaded genera-
lization is presented. Included in this section
is a discussion of the storage operation rulas,
which must be applied to related partitions
during update in order to maintain database
consistency and integrity. Section 4 is a discu-
$sion on the maintaining of partitiop informa-
tion at run tiae.

2. THE SAM* GINERALIZATION CONSTRUCT

Ino this section, we briefly describe the Seman-—
tic Association Modael (SAMw*) [30,21]) ard empha-
size on the notion of generalization supported
by it. Several constructs of SAM® will be used
to model horizontal and vertical partitioned
databases in section 3.

' Data modeling in SAM®* revolves around the
notion of CONCEPTS({or OBJECTS) and ASSOCIATIONS.
The model distinguishes two general types of
concepts : ATOMIC and NON-ATOMIC. An atoaic
concept is a non-decomposable, observable physi-
cal object, abstract object, event or any data
element that the database user regards as a
fundamental information unit and whcse meaning
is assumed to be understood and thus need not be
dafined. An employee's age '25', the name 'John'
are examplas of atomic concepts. A non-~atomic
concept on the other hand, is a physical object,

abstract cbject or avent whose meaning is defin-
ed (described) in terms of other atomic and/or
non-atomic concepts. For, example the concept of
an employee can be described using the concepts
name, age, address, and salary.

Atomic and/or non-atomic concepts can be
grouped together to describe another non-atomic
concept. This grouping is called an ASSOCIATION.
Different types of associations can be distin-
guished based on the different structural prope-
rties,operational characteristics and semantic
constraints that the user or DBA wants to asso-
ciate with these groupings of concepts. If the
user or DBA specifies that a concept is of a
certain association type, a DBMS using SAM*
would process the concept in accordance with the
semantics associated with that type.

SAM* provides the user with seven such
associations (modeling constructs). A detailed
description of SAM* is out of the scope of this
paper. We will, however, examine the generaliza-
tion association in detail as it has been found
useful for modeling partitioned databases with/
without replication.

The notion of generalization was first
used by Smith and Smith in database work. The
generalization association in SAM* is defined in
much the same way in that concepts can be
grouped together based on their generic nature
to form a more general concept. However a few
enhancements have been made to the original
concept to make it more useful in data modeling.

In SAM®, a generalization association is
formad by grouping a number of generically rela-
ted concept types which can themselves be defin-
ad by the same set or different sets of attri-
butes. The ey attributes of these component
concept types, however, must have the same unde-
rlying domain; that is they must draw their
values from the same set of data elements. The
set of entities which are uniquely defined by
the set of key attribute values of a component
concept type may or may not overlap with that of
another component concept type (the sets may or
may not be exclusive). For example in figure 1,
the two AGGREGATION ncdes FOREIGN_PRCJECT and
DOMESTIC_PROJEC?T, representing two kinds of
projects in a factory can be grouped together to
form the more general concept of PROJECT,

In the graphic representation, the nodes
represent concept types. Each node is labelled
by its association type (G for Generalization,
A for Aggregation and M for Membership). It is
also named for user reference. The directed arcs
in the graph represent attributes whose undezr-
lying domains are pointed to by the directed
arcs. The crossed arcs represent the key attri-
butes. The membership association (M nodes)
define the domains P#, PNAME, AMT and DEPT
respectively. Each domain contaians a saet of
homogeneous data elements. The aggregation asso-
ciation (A nodes) define entity types by their
attributes (arcs). The occurrences of an aggre-
gation association are drawn from the cartesian
preduct of the domain value sets.

As illustrated in figure 1, the set of
attributes that defines the component concept
type FOREIGN_PROJECT is different from that of
the other component concept type DOMESTIC_PRO-
JECT. Their key attributes are, however, defined
over the same domain (the same membership assoc-
iation, P#). The G noda PROJECT is the general-

ization of POREIGN_PROJECT and DOMESTIC_PRO-
JECT. Its occurrences can be formed by either
taking the QUTERJIOIN [13,14,15] of the occurren-
ces of FOREIGN_PROJECT and DOMESTIC_PROJECT over
their common key attribute or the union of their
key values, The former repregentation is more
suitable for presenting the generalized concept
type to the user and the latter is a more conde—-
nsed form suitable for internal machine represe-
ntation.

The operation of outerjoin is an enhancae-
ment of the normal JOIN operator in ralational
algebra, introduced to preserve the informationm
of unmatched tuples which is lost during & nor-
mal join operation. In taking the outerjoin, we
preserve such information by appending certain
additional tuples to the result of the normal
join., There is one additional tuple for each
unmatched tuple from each of the relations. It
consists of a copy of that unmatched tuple,
extended with null values in other attribute
positions. Figure 2 illustrates an example of an
Outer Equijoin. Several constraints that can be
specified with the generalization associatiom in
order to make it more meaningful for data model-~
ing. Among other applications, these constraints
have been found useful for modeling CAD/CAM data
and partitioned databases, The constraints can
be viewed as relationships betwean the sets of
key attribute values of two component concept
typas of the G noda.

Figure 1 illustrates the constraint of Set
rxclusion (SX). The two sets of entities repre-
sented by the occurrences associated with the
aggregation nodes FOREIGN_PROJECT and DOMESTIC~
_PROJECT are mutually exclusive. That is to say
that no key value that represents a foreign
project is allowed to represent a domestic proj-
ect. If P#=] is a foreign project, then there
can be no domestic project with Pisl,

Figure 3 illustrates the constraint of Set
Equality (SE), which specifies that any entity
of GEOMETRIC_INFOR must also be an entity in
MATERIAL_SPEC and LIFT_SPEC and vice versa, In
the case of the non-key attributes that define
the three aggregation nodes being different, the
existence of one key value in one node {Design
=357 in the occurrence of GEOMETRIC_INFOR) would
require that the same key value be in an occur—-
rence of MATERIAL_SPEC and also in an occurrence
of LIPY_SPEC even though the non-key values of
these occurrences may differ or may have null
values.

Figure 4 shows the constraint Set-Subsat
{ST-SS) which specifies that a TOP_SECRET_PROJ
is a PROJECT but a PROJECT may or may not be a
TOP_ SECRET_PROJ. Again, wWe are considering the
constraint in terms of the key value, that is,
any key value which represents a
TOP_SECRET_PROJ must be among the set of key
values that represent PROJECT but the reverse
may not be true.

In figure 5, we illustrate the SET
INTERSECTION (SI) constraint in vhich the sets
of keys which represent occurrences of the
component concept types may overlap, that is,
the intersection of the two sets may not be
empty. Figure 5 models the fact that a MANAGER
Bay or may not be a PROJECT_LEADER and vice
versa.

It should be clear from the above examples,
that the constraints associated with the genera-

lization associastion are the set relationships
between the sets of entities represented by the
occurrences of the component concept types, If
more than two sets are Linvolved, the gat rela-
tionships among them can be graphicaliy represe-
nted by explicitly linking the labeled arcs
between each pair of component concept types as
illustrated in figura 3,

Although the examples seem to suggest that
a generalization association can only involve
concepts formed by the aggregation associations.
this, in general is not true. It can be used to
generalize concepts formed by all association
types of SAM® (including itself). For example,
a G node PART# can be formed over two M nodes
FOREIGN_PART§ and DOMESTIC_PARTS.

We note here that even though a generalizat-
ion can be defined over associations other than
aggregation, the component concept types must be
defined by the same association type. Even
though it is theoretically possible to have a
generalization whose components are defined by
different association types, in practice it does
not seem to be useful to generalize dissimilar
concepts. The grouping of dissimilar objects is
however meaningful in certain situations and is
achieved using the COMPOSITION association of
SAM®,

The go~called notion of Attribute Inherit-
ance can also be modeled in SAM* as shown in
figure 5. Hera all the entity types forming the
generic type have a common attribute. Instead of
repeating the attribute WEIGHT in the definition
of LAND-VEHICLE, WATER-VEHICLE, and AIR-YVEIHICLE,
it is used as a component of the aggregation
association VEHICLE_CHAR in which the generic
type VERICLE is the key attribute whose values
are the set of all VEHICLE occurrences, anad
WEIGHT is the other attribute,

We note here that, as with the other assocc-
iation types, a Generic Hierarchy can ba defined
for the generalization association. For example,

MAN_MADE THING is a generic type over TRANSPOR-
TATION_YQUIPMENT, which ig a generic type over
VECHICLE, etc.

We gsummarize the structural properties and
constraints of the generalization association :
{1) The occurrences of a generic type are formed
by either taking the outerjoin of its component
concept types Cl, C2, .. . Cn, or the union of
the key attributes of C1, €2, . . . Cn. 1In case
of the outerjoin representation, the attributes
of the generic type is the union of the attribu-~
tes of its component concept type.

(2) The generic relationship of concepts formed
by any type of association can be explicitly
modeled by generalization. These rmlationships
and the agssociatad constraints are treated as
meta-data and are stored in the data dictionary.
(3) N-concepts can be grouped to form a generic
type (N>1). These concepts can be defined by the
same or different sets of component concept
types but their xey attributaes must be defined
over the same domain

(4) The set relationship betwaen each pair of
the component concept typaes may be of type set~
subset, set intersection, set exclusion or set
equality. These set relationships are the integ-~
rity constraints associated with the generaliza-
tion.

3. MODELING PARTITIONED DATABASES

Having discussed the needs and concept of horiz-
ontal and vertical partitioning of data and the
notion of generalization, we now deal with the
problem of modeling partitioned databases with
/without replication.

A study of distributed database management
systems and the kind of data that needs to be
partitioned has led us to identify the following
useful types of partitions :

(1) Horizontal Partitioning without Replication.
(2) Horizontal Partitioning with partial Replic-
ation.

(3) Horizontal Partitioning with complete Repli-
cation.

(4) Horizontal Partitioning with Subsetting.

(5) Vertical Partitioning with Replication.

(6) Vertical Partitioning without Replication,
(7)~(14) combination of (1)-(4) with each of
(5), (6).

For each of the above cases, we show what
the partition means in terms of the relational
model and explain how it can be modeled using
the SAM®* generalization construct. We also list
the insertion/deletion/update constraints on the
partitioned data necessary to enforce database
integrity and consistency.

We treat the primary key as just another
attribute and allow it to be modified. For each
of the partition cases the following general
rules must hold at all times
(1) ENTITY INTEGRITY RULZ : The primary key
value cannot be null in any of the relations
(non-key attributes may or may not be null).

(2) UNIQUE XEY CONSTRAINT : The primary Xkey
value cannot be replicatad in any of the relat-
ions.

3.1 Horizontal Partitioning without Replication
Figure 7(a) illustrates the case of horizontal
partitioning without replication where a certain
set of tuples from R forms Rl and another set
forms R2. There is no overlap between the two
sets of tuples. The situation can be modeled as
shown in fiqure 7(b) where R1(A, Bl, B2, B3, B4)
and R2(A, Bl, B2, B3, B4) are shown as aggregat-
ion nodes (The attribute A being the key in both
the relations). The constraint SX on the G node
ensures that there is no overlap of key values
in these two sets of occurrences, The C nodes
represeanting sitel and site2 indicate that Rl is
present at sitel and R2 is present at site2. A C
node represents the composition association in
SAM* and groups similar or dissimilar concept
types. It identifies a sub-database within a
database.

CONSTRAINTS :—

INSERTION : Before inserting a tuple (A, Bl, 32,
B3, B4) in Rl or R2, verify that the kay value
(thus the tuple) does not exist in R2 or R1

respectively.
DELETION : No constraints.
UPDATE : Before modifying the Xxey value in

R1/R2 ensure that the key value does not exist
in R2/R1.

3.2 Horizontal Partitioning with Partial Repli-
cation

Figure 8(a) illustrates the case of horizontal
partitioning with partial replication. The key
values of the tuples of Rl and R2 (A, Bl, 82,

B3, B4) are allowed to overlap, This fact ig
implied by the S5I conatraint on the G node
(figure 8(b)). The relations R1 and R2 are
represented by aggregation nodes and reside at
sitel and site2 respectively, as shown by the C
nodes.

CONSTRAINTS :~

INSERTION : Before inserting a tuple in Rl or
R2, check if that value of A is present in R2 or
Rl., If the value exists in the other relation,
then verify to ensure that the non-key
attributes of both tuples have the same values.
In the case that the value of A is not present
in the other relation, check with the overlap
condition specified to see whether it also
should be inserted in the other relation.
DELETION : If the tuple to be deleted from any
one of the relations is present in the other
relation make the deletion in both relations.
UPDATE : Check with the overlap condition
specified to see if the tuple that is being
modified exists in the other relation. If it
does, make the same modification to the other
relation.

3.3 Horizontal Partitioning with Complete Repli-
cation

Figure 9(a) illustrates the case of horizontal
partitioning with complete replication. The
figure illustrates the simple case of R=R1l=R2
but in the more general case we can have
Rl=R2=gome subset of R. This situation is model-
ed in fiqure 9(b) where the SE constraint on the
G node ensures that every occurrence of Rl is an
occurrence of R2 and vice-versa. The A nodes
represent the partitioned relations and the C
nodes the sites.

CONSTRAINTS :—

INSERTION : Every tuple inserted in R1/R2 must
be inserted in R2/R],

DELETION : Every tuple deleted from R1/R2 must
be deleted from R2/RI.

UPDATE : For every tuple modified in R1/R2,
the same changes must be made to the correspond-
ing tuple (same key value) in R2/R1,

3.4 Horizontal Partitioning with Subsetting
Fiqure 10(a) illustrates tha case of horizontal
partitioning with subsetting. The set of tuples
that congtitute R2 is a subset of the set of
tuples that constitute Rl. The figure illustrat-
es the special case of R=Rl but in general this
may not be true, The above situation can be
modeled as shown in figure 10(b) where the ST-S5
constraint on the G node ensures that every key
occurrence of R2 is a key occurrence of Rl, thus
avery tuple of R2 is a tuple of Rl. The A nodes,
as usual, represent the relations Rl and R2 and
the C nodes the Sites

CONSTRAINTS:—

INSERTION : Every tuple inserted in R2Z must be
inserted in Rl and every tuple inserted in R1
must be checked against the subsetting criteria
specified to see if it should also be inserted
in R2.

DELETION : Every tuple deleted from R2 must be
deleted from Rl and every tuple deleted from Rl
must be checked to see {f it exists in R2. If it
doeg, then it must be deleted from R2 also.
UPDATE : Every tuple modified in R2 must be
accompanied by the same modification to the
corresponding tuple in Rl. For every tuple modi-~

fied in R1l, check if that tuple axists in R2 and
make the same modification to the tuple if it
does.

3.5 Vertical Partitioning without Replication
Figure ll(a) illustrates the case of vertical
partitioning without replication. As mentioned
earlier, a vertical partitioning must {nvolve
the replication of the key attribute. When we
talk of replication, we are considering only the
non-key attributes. The partitioning of R(A, Bl,
82, B3, B4) into R1 (A, Bl, B2) and R2(A, B3,
B4) can be modeled as shown in figure ll(b). The
" Set Equality constraint ensures that every occu~
rrence of Rl has a corresponding occurrence in
R2 which is what is required since we are split-
ting the relation R vertically. Rl, R2 represen-
ted as aggregation nodes have non-kay attributes
(Bl, B2) and (B3, B4) respectively.

CONSTRAINTS : =

INSERTION : For every tuple (A, Bl, B2) inserted
in Rl a corresponding tuple (A, B], B4) must be
inserted {n R2 and vicea-versa. The attributes
Bl, B2, B3, B4 may have null values.

DELETION : For every tuple (A, Bl, B2) deleted
from R]l the corresponding tuple (A, B3, B4) must
be deleted from R2 and vice~versa,

UPDATE The non-key attributas in both
relations may be modified with no constraint on
the other relation unless there is an inter-
occurrence constraint associated with the updat-
ed attribute values. Any change made to the
primary key value, A, nust however be reflected
in the other relation.

3.6 Vertical Partitioning with Replication
Figure 12(a) illustrates the partitioning of
R(A, Bl, B2, B3, B4) into R1(A, Bl, B2, B3) and
R2{A, B3, B4). In the above case the non-key
attribute B3 is replicated in both relations Rl
and R2. The situation can be modelad as shown in
figure 12(b), wvhere as usual the A nodes repre-
sent the relations and the C nodes the sites,
The SE constraint ensures that for any half of
the tuple (of R) present in Rl the other half
(of the same tuple of R) exists in R2.
CONSTRAINTS: -
INSERTION : Every tuple inserted in R]l must have
a corresponding insertion in R2 where the A and
B3 values must be the same and Bl, 32, B3, B4
may be null.
DELETION : For every tuple (A, Bl, B2, BJ3)
deleted from Rl, the correspondirg tuple (A, B3,
B4) must be deleted from R2.
UPDATE : All non-key, non-replicated attri-
butes of Rl and R2 may be changed independently
of the other relation but changes made to A or
B3 must be carried over to the other relation.
In combination cases, horizontal and verti-
cal partitioning are applied simultaneously to
yield blocks or cells of data from the original
relation. In such cases the storage operation
constraints can be derived from the atorage
operation constraints associated with the parti-
cular type of horizontal and vertical partitions
applied. In order to illustrate this, we discuss
one example of combinaticn partitioning., The
other cases are similar in nature.

HORIZONTAL PARTITIONING WITH SUBSETTING AND
YERTICAL PARTITIONING WITH REPLICATION
figure 13(a) illustrates the extension of a

Telation R. Rl and R2 are combination partitions
of the original relation where the horizontal
partition associated with R2 is a subset of the
horizontal partition associated with Rl (all key
Occurrences present in R2 are present in R1l).
The vartical partitions associated with Rl and
R2 contain the replicated attribute B3. The
extensions of Rl and R2 are shown in filgures
13(b) and 13(c). Figure 13(d) illustrates the
SAM* representation of the above situation.
CONSTRAINTS :-

INSERTION : If a tuple (an, bn), bn4) is insert-
ed in R2, tha corresponding tuple (an, bnl, ba2,
bnl) must be inserted in R1, If (am, bml, bm2,
bm3) is inserted in R2, the subset criteria musgt
be checked to seae if the insertion (am, bm3,
bmd) in R2 is necessary.

DELETION : If a tuple is deleted from R1l, the
corresponding tuple must be deleted from R2. If
a tuple is deleted from R2, the semantics of the
subsetting must be checked to see if the corres-
ponding tuple must be deleted from RI1.

UPDATE : If some attribute(s) is modified in
R1/R2 and if that tuple and attribute exists in
R2/R1l, the same modifications must be made to
the corresponding tuple in R2/R1.

4. MAINTAINING PARTITION INFORMATION

In this section, the dynamic nature of the pazrt-
ition information, which is defined by a Sam~
schema and graphically represented by a semantic
network will be discussed. So far wa have made
no mention of how the semantic network can be
modified to incorporate changes the user may
make to the existing partition informaticn. In
this section, we discuss how the network should
be modified when a change is requested.

The user may want to do any of the follow—
ing three operations:

{l) Create a new partition. The user may want to
further partition Rl into R1l' and R1" (figure
14), ©or create another partition RJI from R (fig-
ure 15).

(2) Dalete an existing partition. The user may
want to remove partitions R1 or R2 fxom the
semantic network.

(3) Modify existing partitions, The user may
want to shift attribute Bl from Rl to R2.

For each of the above cases, the changes to
be made to the network to realize the user
request will be discussed. Before that, however,
the problem of how the user should communicate
his request to the system is considered firse.
One solution is to allow the user to issue
explicit commands to the system, paming the
partitions affectad and stating what he/she
would lixe done. This would mean that the user
be well versed with the semantic networkx repres-
enting the partitions. We feel that this goes
against tha notion of user-friendliness and the
'high~level' notion of a DBMS. The task should
then be handled by the system fer vhich wve
assume the existsnce of a powerful query langu-~
age, which allows the system to infer the desir~
ed information from the query issuad by tiae
user. As an example, we consider the following
query in an INGRES like languags :

RETRIEVE ¢ FROM employee INTO female AT sites
WHERE sexw'f';

The given query would enable the system to
create a new partition FPEMALE which contains
only those tuples from the EMPLOYEE relation
where sex is 'f'. The created partition is
stored at sites§, and the relationship between
the two partitions is of typre set-subset.

If the gystem now received another query :

RETRIEVE * FROM employea INTO male AT sitel
WHERE sex='m’';

It would create another partition MALE to
be stored at site2. Again the relationship bet-—
ween EMPLOYEEY and MALE i{s of type set—subget. We
have also to specify the relationship between
MALZ and FEMALZ as in the network diagram the
EMPLOYEZE relation is represented as a G-~node
comprising of EMPLOYEE, MALE and FEMALZ. Set
relationships have to be specified for each
pair. To achieve that, it is necessary to check
the conditions by which these relations are
formed.

Given any two partitions R1 and R2 of the
relation R, there exist four possible wvays in
which they may be related :1) Rl and R2 are
mutually exclusive, 2) R1/R2 is subset of
R2/R1, 3) Rl and R2 are equal, and 4) R1 and
R2 have some intersection of an unknown nature

The nature of the relationship between R1
and R2 can be determined by examining the WHERE
predicates of the queries that created the part-
itions. The examining of the Where clause can be
handled most conveniently by using the Conjunct-
ive Normal Porms (CNFs) of the above mentioned
where predicates. We now present a discussion of
the procedure to determine the relationship
between any two partitions. Foxr the purposes of
this discussion, we assume that Rl and R2 are
partitions of the relation R and the CONFs of the
corresponding partitions are of the form CNFl =
(attrll oprll parll) and (attrl2 oprl2 parl2)
and and CNP2 = (attr2l opr2l parl)
and (attr?22 opr22 par22)

{1) TESTING PFOR MUTUAL EXCLUSION

Compare the first conjunct of CNFl with every
conjunct of CNF2 in turn. If there is no match
between attrll and any attribute of CNF2 the
comparison process is repeated with the next
conjunct of CNP2 until there is a match or all
the conjuncts of CNFl are exhausted without
yielding a match.

In case no attribute of CNFl matches any
attribute of CNF2, Rl and R2 may or may not
share an intersecting domain and we may conclude
that Rl and R2 fall under case 4.

In case some attribute in CNFl (attrln)
matches an attribute in CNF2 (attr2n), this pair
is examined further for determining whether
their associated conditions are mutually exclus~
ive., For example, if oprin (corresponding to
attrln) is '>=' and opr2m (corresponding to
attr2m) is '<¢' and parln = parim = constant then
Rl and R2 are mutually exclusive. In general wve
can pass the matching pair through rules of the
form IP oprl = ' ' and opr2 = ' ' and parln OP
par2m THEN the partitions are mutually exclus-—
ive, where OP represents a boolean operator.

In a case where there is more than one
attribute matching, then any one of the pairs
can render the partitions mutually exclusive
since we are using the conjunctive normal form.

If we cannot show the partitions to be mutually
exclusive, we proceed to check {f they form a
set-gubget relationship.

(2) TESTING FCR SET—-SUBSET (Rl < R2)

If no attribute value in CNFl matches any attri=-
bute value in CNF2, then we cannot conclude that
Rl is a subset of R2 and we conclude case 4. If
there exists at least one matched attribute,
found in comparing CNF1l and CNF2 such that the
CNF2 conjunct spans over the CNFl conjunet (this
can be determnined by passing the matching con-~
juncts through rulaes of the type discussed in
case (1)), then Rl can be concluded to be a
subset 0f R2 provided that no conjunct of CNF1
spans over a conjunct of CNF2 and there are no
additional conjuncts in CNF2 (no terms restrict-—
ing the values of an attribute that iz not
present in CNF1).

{(3) TESTING FOR SET-EQUALITY

If Rl is determined to be a subget of R2 in 2.
then the possibility of set-equality between R1
and R2 must be verified. This is done by testing
if R2 is a subset of R]l using the methodology
outlined in 2. If R1 < R2 and R2 < Rl, then we
can conclude that Rl = R2, . .

{4) EXISTENCE OF SET INTERSECTION

This option ig relevant when all the above tests
fail to establish some definite relationship
between R1 and R2. Here, we assume that Rl and
R2 intersect in an undetermined fashion. This
case thus serves as a default case and caters to
all partitions which cannot be explicitly class-~
ified,

We now return to the problem of modifying
the existing network, once a user request has
been received and identified. As mentioned earl-
ier, the system can receive three classes of
requests. We discuss each one in turn through
examples.

(A) CREATE A NEW PARTITION
Here we identify two types of requests
(a) Partition a relation that is itself a parti-
tion of another relation, For example, partition
Rl into R1l' and R1" (figure 14).
(b) Create another partition from a relation
that is already partitioned. For example create
R3 from R in addition to R1 and R2 (figure 15).
For requests of type (a), we need to make
the following modifications to the semantic
natwork
(al) Convert the node representing the relation
to be partitioned (R1) to a G node and remove
all attribute pointers from the node.
(a2) Create as many A nodes as the pumber of new
partitions desired. These nodes are the compon-
ent concept types of the G node in (al).
(a3) Create as many C nodes as the number of new
(non-existant) sites required and connect them
to the appropriate A nodes which repregent the
partitions being stored at these sites.
(4a) Create M nodes {may or may nhot be dupli-
cated) for the attributes that comprise the
resulting partitions. Thase attributes initially
formed relation R1 and the resulting semantic
network must be consistent with this rnotion. If
some attribute of R1 had a relationship with
another antity outside of the part of the net-
work being considered, the relationship should

http:i��ub.et

be maintained even after the modification.
(a5) Specify set relationships between each pair
of A nodes created {in (al),

The suggested modifications transforms the
semantic network into the one shown in figure
l4. However, it should be noted that the rela~
tion Rl as shown in the figure is present only
in the logical view of the database and does not
exist physically. Therefore we can only make
this transformation {f the union of the set of
tuples comprising R1' and R1" {s the same as the
set of tuples comprising Rl. If this is not
true; we will loose some information in making
this transformation and need to physically store
Rl. In ter=ms of the network it will mean crea-~
ting another A node (R1l) under the G node in
addition to the ones in (a2) with a set~subsat
relationship with all the other nodes

It {s mentioned here that changing the A
node representing Rl to a G node as suggested in
(al) is insignificant with regard to any prev-
ious relationships involving R1. The A node
representing Rl before modification denoted a
set of tuples constituting the relation R1. The
same meaning {s retained by changing it to a G
node which represents an ocuterjoin of the const-
ituent partitions.

Por requests of type (b), we suggest the
following modifications to the existing semantic
network :

(bl) Create another A node representing R as
another component concept type of the G node
representing R,

{b2) Specify set relationships betwean the
created node in (bl) and all other existing A
nodes.

(b3) Create another C node, if required, to
denote the site at which the new partition will
be stored.

(b4) Show the attributaes of the created partit-
ion R3 by pointers to the desired attributes.

The result of the transformation will be
the semantic network shown in figure 15.

(B) DELETE AN EXISTING PARTITION

To delete the partition Rl from the databass, we
propose the following modifications :

(a) Remove the A node represanting the partition
R1.

(b) Remove all pointers to that node.

(c) Remove all pointers from that node.

(d) Removae all nodes and the pointers to and
from the nodes that are existentially dependent
on the node removed in (a).

The above transformation yilelds the network
diagram as shown in figure 16.

We note from the figure that the G node
present no longer serves any useful purpcse and
should be deleted from the semantic network. The
removal of the G node, however, may have additi-
onal triggering effects since it may be involved
in other associations and the consequences of
its removal must be propogated throughout the
network.

Let us assume that after the transformation
applied earlier, the network is as shown in
figure 17(a). We now discuss the consequences of
deleting the G node, in view of its relation~-
ships with nodes X1 through X4. It should be
mentioned here that this discussion is applicab-
le only to G nodes as in figure 17(a) which have
only one constituent type and are involved in

relationships with other nodes.

For the A and I nodes (I node in SAM+*
models the relationship betwveen/among indepen-
dent concept types), the romoval of the partit-
ion Rl translates to the removal of all tuples
from the set whose key value matches any of the
key values originally present in Rl but not in
R2. This modification is necessitated due to the
fact that Rl is now non-existant and it's occur—
rences should be deleted from wherever they
existed. The G node can now be removed and the
nodes X1, X2 ¢an be connected directly tc the A
node representing R2.

For the C node, it suffices to just remove
the G node and connect it directly to the A node
representing R2 since the C node is a collection
of the occurrences of it's component concept
types.

The above mentioned procedure, to account
for the A, I and C nodes can be applied recursi-
vely to the G node (X4) provided it meets the
requiremants of having only one component con-
cept type and being involved in relationships
with other nodes., The resulting transformation
ig shown in figure 17(b).

{(C) MODIFYING A PARTITION

The operation of modifying a partition (add Bl
to R2) involves the shifting of attributes from
one partition to another and may not Dbe as
useful as the previous two operations as it
involves only a restructuring of the network and
no addition or deletion of information. It can
be realized by a change of pointers or depending
on the request, a duplication of an existing
node.

All the proposed modification steps should
be treated ags one operation which is valid only
on the completion of all the steps. Partial
completion may lead to serious problems, which
may be difficult to retract. The creation of
each new partition must also bs accompanied by
the storage of the partition criteria in the
data dictionary This would enable the system to
maintain consistency in the database as tuples
are inserted and will also be useful {n defizning
set relationships should another partition be
created at run time.

5. CONCLUSION

A modeling construct and some techniques for
modeling and processing partitioned and repli-
cated databases have been presented. The genera-
lization association of SAM* and its associated
set constraints are used to explicitly model
fourteen meaningful combinations of partitioring
and replication of data. Storage cperation rules
for foreing the integrity of data partitions
have been presented. Strategies and rules for
handling dynamic creation and modification of
partitions using schema modification have alsoc
been described. The model, rules and techniques
presented in this paper are useful for logical
database design of both centralized and distri-
butaed databases.

Qur future work in this area includes : (1)
developing a methodology to determine an optimum
fragmentation scheme based on user/transaction
requirements.(2) investigating strategies for an
optimum Fragment-Site allocation scheme in a
heterogeneous environment.(3) developing a query

|

modification algorithm to retrieves/update data
from fragmented relationa when a query makes
referagce to the original relation.

REFERENCES

(l) S.Ceri, M.Negrl and G.Pellagati, Horizontal
Partitioning in Database Design, ACM-SIGMOD,
1982.

(2) S.Ceri, S.B.Navathe and G.Weiderhold, Dis~
tribution Design of Logical Database Schemas,
IEEE-TSE, SK-9:4, 1983.

(3) S.B8.Navathe, S.Ceri, G.Weiderhold and J.Dou,
vVertical Partitioning Algorithms for Database
Design, ACM Transacticns on Database Systens,
vol. 9, no.4, Dec. 1934, pp. §80~-710,

(4) M.Hammer and B.Niamir, A Heuristic Approach
to Attribute Partitioning, ACM-SIGMOD, 1979.

(5) M.J.Eisner and D.G.Severance, Mathematjical
Techniques for Efficient Record Segmentation in
Large Shared Databases, Journal of the ACKN,
23:4, 1976,

(6) W.W.Chu, Optimal File Allocation in a Multi-
ple Computar System, IFEF-TC, C-18:10, 1969.

(7) H.L.Morgan and J.D.Levin, Optimal Program
and Data locations in Computer Networks, Commu-
nications of the ACM, 20:5, 1977.

(8) C.V.Ramamocorthy and B.W.Wah, "The Placement
of Relations in a Distributed Relaticnal Data-
base,® Proe. First Int. Conf, on Distributed
Computing Systems, 1979.

(9) P.P.S.Chen and J.Akoka, *Optimal Design of
Distributed Information Systems," IEXE-TC, C-
29:12, 1980.

(10) R.M.L.ee and R.Gerritsen, Extending seman-
tics for generalization hierarchies, in Proceed-
ings of ACM/SIGMOD International Conference on
Management of Data, Austin, Tex., 1978,

(11)y J.M.Smith and D.C.P.Smith, Database abstra-
ctions: Aggregation and Generalization, ACM
Trans. on Database Systems 2(2): 105-33) (June

1977 .

(12) Quillian, M.R., Semantic memory. In Seman-
tic Information Processing, M.I.T. Press, Camb-
ridge, Mass., 1968, pp.227-2638.

(13) Date,C. °"The OQuter Join,* im Proe. 2nd
Intl. Conf, on Databases, Cambridge, England,
September 1983, pp. 76-106.

(14) Dayal, U. *Processing Queries Over Genera-
lization Hierarchies in a Multibase System,” in
Proc. 9th Conf. Very Large Data bases, August
1983, Milan, Italy, pp. 342-353,

(15) Reiner,D., and Rosenthal, A. "Extending the
Algebraic Framework of Query Processing to Hand-
le Cuterijoins,® in 10th Intl. Conf. Very Large
Data Bases, Singapore, August 1984, pp. 1ll2-120.
(16) Smith,T.M., P.A.Bernstein, U.Dayal, N.Good~
man, T.Landers, K.W.T.Lin and E.Wong. “Multi-
base-Integrating heterogeneous distributed data~
base systems”. Proc. AFIPS NCC 1981. pp.487-499.
(17) Landers,T.,and Rosenberg, R. "An Overview
of Multibase,” in Proc. 2nd Intl. Symposium on
Distributed Data Bases, H.J.Schneider (ed.),
September 1982, Berlin, F.R.G., pp. 153-184.
(18) Dayal,V,, and Hwang, H, "View Definition
and Generalization for Database Integration in
Multibase,” IFEE Trans. on Software Engineering,
Volume 5E-10, Number §, November 1984, pp. 6§28-
644. :

(19) Mannino, M., and Effelsberg, W. *A Methodo—
logy For Global Schema Design,” University of
Florida, C.I.S. Dept. Technical Report No. TR-
84~1, September 1984,

(20) Su, S.Y.W., "SAM* : A Semantic Association
Model for Corporate and Scientific-Statistical
Databases,* Information Sciences, 29, 13583, pp.
151~199.

(21) Su, S.Y.W., "Modeling Integrated Manufactu-
ring Data Using SAM*," Proc. of Data Base Sys-—
tems for Office, Engineering and Science, Kar-
lsruhe, West Germany, March 1985, also IEZEX
COMPUTER, vol.19 no. 1, Jan 1986, pp. 34-49.

PART-DATA
SUPPL ER - P ARTS -
s& | sciTy pe | pCITY
3] LONDON Pt | LONDON
2 PARIS P2 | MEY YORX
S3 NEW YORK | | P3| ATHENS

AND PARTS :

OUTER FOULION OF SUPPLER

s* SCITY pETACITY

FIGURE 1: SET EXCLUSION CONSTRANT s1 LONDON | P1
s2 PARIS MR
s3 NEY YORK (P2
NAL | NRL P3

&

: TRARNTS
ey FIGURE 3 - SET LOUALITY CONS

ML
NV YORK
ATHENS

FIGURE 2: AN EXAMPLE OF OUTER

SUPERVISOR

st 1
MANAGER PROKCT-
A

EADER

fUON

ToP-SECRET
-PROY

LAND- YATOR- ARe

£* Nee "OF PR SUDGET pe PHASE CLASSFICATON VEWCLE VEHICLE VENICLE
EMPLOYELS
FIGURE §: SET NTERSECTION CONSTRANT FIGURE 4 : SET SUBSET CONSTRANT FIGURE 6 MHER(TANCE OF WTIGHT

D

7(a) : HORIZONT AL P ARTITIONS
WITHOUT REPLICAT ION

N

i) 4} R $TE2

A 81 82 83 84

Y%

FIOURE 10(a) | HORZONT AL PARTITIONNG
YITH SUBSETTING

A 81 B2 83 84
FIGURE 10(b) : TME MODEL FOR PARTITIONS Rt & R2

» [a [81 782 |83 [86 22 [(83|84
al (b1t]p12]b13 16 ’tz 523 b24
22 |b21 522523 |24 a3 |533(b3e
a3 | 531 |532(p33 |34 FIOURE 13(0)
a4 | bal | ba2|be3 (bas

FIOURE 13(2)

Rt | A |81 B2 B3
at | BV (b12]018
a2 (9211022 (523
33 | 531|b32 b33
34 | 041 (b42 | 543

81 2 33 84
<

W

FIOURE 8(a) : HORRONT AL P ARTITIONS
WITH PARTIAL REPLICATION

A 81 82 a3 84
FIGURE 8(b) : THE MOOEL FOR PARTITIONS RY & R2

7 \\N
)

FIOURE {1(a) : YERTICAL PARTITIONING
WITHOUT REPLICATIOR

7\\\

ST R SITE2

81 82 83 84

FIGURE 11(b) : THE MODEL FOR PARTITIONS R1 & R2

R=R) aR2

FIGURES () . HORTONT AL PARTITIONS
YITH COMPLEITE REPLICATION

FIGURE 9(b) : THE MODTL FOR PARTITIONS Rt & k2

[a {3

B2 | 83 | 84

77N\

FIRRE 12(s) : VERTICAL PARTITON PO
YITH REPLICATION

A a1 82 83 9e
FIGURE 12(b) : THE MODEL FOR P ARTITIONS R1 & R2

FIGURE 13(8)
A B B2 By 8¢ FIGURE 14 : PARTITION RY NTOR1™ & &Y™ FIGURE 15 : CREAT NG 13 FROM R
FIGURE 1 3(d) HORZONT AL P ARTITIGNING
¥ITH SUBSETT NG AND VERTICAL
P ARTTIONING '¥ [TH REPLICATION
ser | STE2 X1 x2 X3 x4 xie x2¢ X3 x4
! ¢ srey @) siter ! T)
® Q © !)
- - R ' s ©
t SITE2 ! K
- - - AIR2 - = - R2\ AL R2
. & (M) = =)
A B2 83 A 82 83 A 32 83
FIGURE 16 : THE DIAGRAM AFTER FIGURE $7(a) : THE NETWORK DIAGRAM FIGURE 17(b) - THE NETWORX DIAGR AM
OELETING R? AFTER TRANSFORMATION AFTER MODFICATION

* securenses medtiied

